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Propagation in Twisted Square Waveguide

LEONARD LEWIN, SENIOR MEMBER, IEEE, AND THOMAS RUEHLE STUDENT MEMBER, IEEE

Abstrace—The problem of propagation of TE medes in twisted rectan-
gular waveguides has been solved except for the case where one of the
propagating modes becomes degenerate. The purpose of this paper is to
show how to obtain a solution for degenerate modes in a twisted rectangu-
lar waveguide, with emphasis on the particular case of the square wave-
guide, for which the lowest order mode is degenerate, It is shown that the
propagation constant for the twisted square waveguide can be expressed as
an asymptotic series, the first term being the propagation constant for a
straight square waveguide and the first order correction term being of
order 1/L where L is the distance in which the guide makes one full
rotation. The propagation constant for a nondegenerate mode in a twisted
rectangular waveguide, on the other hand, can be expressed in a similar
manner except that the first-order correction term is of order 1/L2. Some
comments are offered on the nature of the transition when the propagating
mode is almost degenerate.

I. INTRODUCTION

HE PROBLEM of propagation of nondegenerate

TE-modes in twisted rectangular waveguides has
been solved [1, pp. 96-101], and shows that for a narrow
rectangular waveguide the polarization of the dominant
mode twists as the guide twists. As the guide becomes
more and more square an increased coupling to a cross-
polarized dominant mode can be seen. In the limit as the
rectangular guide becomes square, the nondegenerate
solution breaks down. The square guide is degenerate in
the respect that there is a cross-polarized dominant mode
in addition to the normally polarized dominant mode
which must be explicitly taken into consideration at the
beginning of the solution by starting with two coupled
modes similar to what has been done for the curved
circular waveguide [1, pp. 105-111]. When the solution is
found it is seen to have a quite different behavior from
that of the narrow rectangular waveguide.

The square waveguide represents the case where the
lowest order mode becomes degenerate. It is treated in
detail here, but it will be shown that any degenerate
propagating mode can be treated in the same way.

II. TuE WAVE EQuaTION

The twisted square guide is shown in Fig. 1. The wave
equation for a twisted coordinate system X, Y, Z has been
found to be [1, pp. 96-101]
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Fig. 1.

Twisted square waveguide and helical coordinate system.
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where
X=1xcos(pz)+ysin(pz)
Y=ycos(pz)— xsin( pz) 2)
Z=z
k=2m/\
p=2w/L (3)

x,y,z are the coordinates in a fixed rectangular coordinate
system and L is the distance in which the twisted guide
makes one complete rotation. For the TE modes the
electric field can be expressed as [1, pp. 96-101]

_ o
XY
o
BT ox
E,=0. (4)
The boundary conditions for the square guide are
o
EX=F);=O, atY==+a/2
v
E,,=—a?=0, at X=+q/2
E, =0, on the guide surface.
This last condition is automatically satisfied by (4).  (5)
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IIL

We shall seek to construct a solution as was done in the
case of the rectangular guide [1, pp. 96—101] by assuming
a solution of the wave equation for ¥ of the form

¥ =exp(—jBZ)(¥o+p ¥, +p* ¥+ -+ )

ZEROTH ORDER SOLUTION

(6)

where

2
K2—B2= T (144, p+ A0+ ). 0
a

Substituting (6) and (7) into the wave equation (1) and

examining the terms of the order p°, the following equa-
tion is obtained:

—+ — + —¥,=0. 8

ax2  ay: & ° ®)

Solving for ¥, and applying the boundary conditions of
(5) it can be seen that there are two solutions, correspond-
ing to the TE;, mode and the TE;, mode. Therefore, the
following expression can be written for ¥:
L .7
‘Ifo-sm(-‘;X)+asm(; Y) 9
with a a parameter to be determined.

When we have solved for a and A, we find that there
are two distinct modes, resembling the sum and difference
of the TE, and TE;, modes in quadrature. These two
modes will propagate at different velocities and therefore,
just as is found for the curved circular waveguide [1, pp.
105-111], [2, pp. 58-68], the combination of these two
modes at any cross section will involve a phase change
depending on the amount of twist in the guide. At certain
critical points the phase change can be 90°, 180°, or 360°,
causing a TE; type mode to change into a TE, type
mode and back again as it propagates down the guide.
The solution no longer propagates more or less unchanged
as it does for the narrow rectangular twisted waveguide.

1V. FIRST-ORDER SOLUTION

Substituting (6) and (7) into the wave equation (1) and
retaining only the terms of order p the following is ob-
tained:

3w, 0, o? 7’ (7 W
,3X2 + ay2 +?‘I’1+?A1(SIH(-‘—1‘X)+(XSIH(; Y))
o kil i Ty )=
- 2jk p Y(cos aX)+2jk aaXcos(a Y) 0
(10)
with

2\1/2
k'=k(l-— —}\-—) .

44>
The most general solution satisfying the boundary condi-
tions is

¥, = § § Amncos[<X—§)—m—w]cos{(Y—%)E].

m=0 n=0 a a

(11)

45

Substituting this into (10) and applying the orthogonality
properties of the cosines we get

€, ra/2 ra/2
a? —a/2f—a/2
ol (x5 o (1)
-{Al(sin(%X)+asin(%Y))

—2jk'$ Ycos( %X)+2jk’—:‘;aXcos( % Y)} dxdy

(m*+n?—1)A4,,,=

12
where (12)
&=1
é,=2, m>0.

It can be seen that when m=0, n=1 or when m=1, n=0,
the left-hand side of (12) goes to zero. When this occurs
there are only two unknowns left in (12), which can,
therefore, be solved for 4, and «, and give

a=ztj (13)
Ay=—16jk'aa?/n*= +16k'a*/=*. (14)

To assure uniqueness we require that ¥, be linearly free
of ¥,; ¥, be linearly free of ¥, and ¥; etc., as was done
with the twisted rectangular waveguide [2, pp. 26-35].

Therefore, solving (12) for A4, and applying the unique-
ness considerations, we find that

¥,= 3 §'Amcos[(x_ a)mm }cos[(Y— %)i’i]

a

m=0 n=0 ‘
(s)
where
Amn=0’ m=0,n=0
2 —
R e L
7* n’(n*-1)
a® 1—cosmm
=3k S ——"2,  m>1n=0
T m}(m?—1)
2
+ -
- a* | (1+cosmw)(1—cosnm)
at n*(1—m?)
_ . (1=cosmm)(1+cosnm) L w1
m?(1— n?) m*+n*—1
(16)

The primes on the summations in (15) denote that the
m=1 and n=1 terms are omitted.

V. SECOND-ORDER SOLUTION

The second-order equation will only be solved far
enough to determine the value of 4, in (7). Substituting
(6) and (7) into the wave equation (1) and retaining the
terms of order p?, the following equation is obtained:

2w, 9%,
0X2  ay?

77_2
+ U= F(X.Y) (17)
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where

2 2
=T _(v2—4,)sin( Z i (x2%—A,)sin{ Z
F(X,Y)= az(Y Az)sm(aX)i] az(X Az)sm(aY)
7 I | 7
+;(X+16j?Y)COS(;X)

T 16 T 1
2 +iy—- — Z - o
+a(__]Y 2X)cos(aY)+16k WZ\I/1+2jk

T

Yaqfl_Xa\I/l)
(r32-x5) 09

Once again, the most general solution satisfying the
boundary conditions is
*xQ

¥,= m2=0 nioBm,,cos[(X— %)%:T— ]cos[(Y— -;-)n_;r.]
(19)

where, on applying the orthogonality conditions, it is
found that

w18 = s (2 (9 gy
( V= [ 7 XY
a\ mmw a\ nm
-cos[(X—E)T]COS[(Y—E)T]dXdY.

(20)

When m=0,n=1 or when m=1,n=0, the left-hand side
of (20) goes to zero. We can see by inspection of F(X,Y)
that there is only one unknown in it and therefore two
equations and one unknown will result when m=0,n=1
or m=1,n=0. Fortunately, it turns out that both equa-
tions give te same result. Solving for 4, it is found that

2 2 @1

a a
Az——i—2-+5;5+S

where

o] o0

€, (1+cosma)(1 —cosmr)[mz(l —m?)+n?(1+ mz)]

find that

2
PR T
Bz=k2“:f/11_ ??;—Az (25)

where A4,, A,, and p are given in (14), (21), and (3),
respectively. An alternative form of (25) is

1_1_ 116 1)1 = 128

NN Ly, 2|21 A
(2% 364 1600 128
+ | 222
e

where A, is the wavelength in twisted square guide, the
dominant wavelength in straight guide A, is

A

A=
(1-A2/4q%)"/?
and
0 2
g= 3 7(1+cosmm)(1+2m )tanh(z\/m )
m=2  Am?~1)/? 2

Numerically it is found that g=0.063774, 7 =0.20035.
L =the distance in which the guide makes one full rota-
tion.

A plot of 4,7%/a? versus a/A\ is given in Fig. 2.

VL

We know that as the distance in which the guide makes
one full rotation approaches infinity, the wavelength at
the cutoff frequency will approach 2a. Therefore, we can
assume that AA=(2a—A,), where A, is the wavelength at
cutoff frequency in the twisted guide, will be small. An
equation for the cutoff frequency can be written in terms
of powers of AA, and when this has been done it can be
seen that A\ is of order 1/L2 Therefore, retaining all

CHANGE IN CUTOFF FREQUENCY

LD

T m=Q n=2

a2
S=—128— +64k™
75

The doubly infinite series in (22) can be partially summed
to give

222 120 g 4r?
277 364 1600 128
'(T Eoe i ey )} (23)
where
o0 1 2
g= S a( +cosm7r)(1+2m)tanh(z e )
m=2 2(m2—1)9/2 2
(24)

This series is extremely rapidly convergent (~1/m’).
We can now express the propagation coefficient in the
twisted square guide to order p2 Solving (7) for B2 we

: (22)
n(m?~ 1 (n2+m?—1)

terms of order 1/L? or lower we find that the cutoff
frequency of the twisted square guide increases, ap-
proximately in the ratio of

a2 16
1+ — 1+?i—7;5(2+

w?  256\/?

The plus sign in (27) gives the ratio for the mode with
rotating polarization in the same direction as the guide
twist (a = +), while the minus sign gives the ratio for the
mode with the polarization rotating in the opposite direc-
tion of the twist (a= —)).

VIIL.

In Fig. 1 if we replace the waveguide dimension in the
Y direction by (2¢+ )a, where ¢ is an integer, we can

HigHER ORDER DEGENERACIES
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Fig. 2. Graph of 4,72/ a? versus a/A.

solve for the propagation at a higher order degeneracy.
The boundary conditions can now be written as

v a

W—O, at Y—i(2q+1)5

¥ a

ﬁ=0, atX=i—2~. (28)

Solving for a and A4, in the same way as was done for the
square waveguide we find that, to first order in 1/L,

1 1 al 16

A2 2T b L

(29)

where

b=(Q2q+a, g=0,1,2,---.

It can be seen after solving for ¥, that there are two
distinct modes, resembling the sum and difference of the
TE,, and TE,,,, ) modes in quadrature, where g is any
nonnegative integer,

¢+ D)7y . (m (T
T —s1n(aX)ijsm(a Y).

(30)
When g=0 then a=>b, and (29) reduces to (26) (to first
order). Similarly, (30) reduces to (9).

‘I'0=sin(—Z-X)i-jsin

VIIIL.

The previously outlined method does not lend itself to
solving the problem of the almost degenerate guide. The
method for the square guide will only work exactly at a
degeneracy. The solution for the rectangular guide works
well when one dimension is quite a bit larger than, and
not an odd integer submultiple of, the other. As the guide
dimensions move closer and closer to a degeneracy the
rectangular solution requires a larger and larger L for
convergence and it blows up altogether when the guide

THE ALMOST DEGENERATE GUIDE

47

becomes degenerate. Therefore this asymptotic method
yields no useful solution for a twisted guide near (but not
exactly at) a degeneracy.

A similar type of difficulty can be seen in the problem
of a junction between straight and curved rectangular
guide [2, pp. 44-57] near the cutoff of higher order modes.
It also appears that the solution of TM modes propagat-
ing in a twisted rectangular waveguide [3] similarly fails
near a degeneracy, though exactly at a degeneracy the
method of this paper should be applicable.

We would like to have a solution which would behave
like the rectangular solution [1, pp. 96—101] when one
dimension is quite a bit larger than, and not an odd
integer submultiple of, the other and would behave like
the leading term in the degenerate guide solution when
one dimension is an odd integer multiple of the other. A
possible form of solution can be constructed from the
knowledge of our existing results. However, this possible
solution is not unique and is shown here only to give some
idea as to what form the solution might take in the case of
the almost degenerate guide.

The speculated structure for the solution, which joins
the rectangular and square formulas through a smooth
transition is

AF
2 2 2.2
S R
A2 Cnm L2\ DA, 16 6a
(31
where
N A

(1-A%/4a%)"?
2,2 22
C= b 6+7r2—ﬂ—2ig_(_<_bl
8 3a® 7°b
2(¢)=16.902+ 128tan¢
o = (2 +1/8)(m~ 1/4)tanh 26(m* = 1/2)"]

—43
i (m*—1/4)’

and

_ @b

- 2a’
So long as b#(2g+ 1)a, so that ¢5#(2g+ 1)« /2, where q
is a nonnegative integer, the square root in (31) can be
expanded in powers of 1/L?, to give the known form for
Ar. But as b—>(2¢ + 1)a, |tang|—c0 and |C| becomes large,
so that the expansion becomes unavailable. Exacily at
b=Q2¢g+1a, |C|—> and the square root reduces to
*aC/bLA,, giving the first correction term in 1/L in
(29). It is clear, therefore, how some such structure as (31)
can bridge the two forms, but it is much more difficult to
see how to develop a suitable expansion parameter there-
from. It should be stressed that no particular credence can
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be claimed for the form in (31), and that the purpose of
this section is to indicate the special nature of the difficul-
ties associated with the near-degenerate cases, and why
the attempted expansion runs into trouble.

X. CONCLUSIONS

With the publication of this paper (and also a forthcom-
ing paper dealing with propagation of the TM modes [3])
we can say that the problem of propagation in a twisted
rectangular guide is complete and well understood with

the exception that there is still work that needs to be done
to obtain a valid and useful expansion in the neighbor-
hood of, but not exactly at, a degeneracy.
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Dispersion Relations for Comb-Type
Slow-Wave Structures

I. L. VERBITSKII

Abstract—Asymptotically accurate dispersion relations for slow eigen-
waves of a dense comb placed on the wall of a parallel-plate waveguide are
given in closed form, The equations can be easily reselved numerically.

An analysis of dispersion relations for combs, based on the above-men-
tioned equations, has advantages over commonly used methods because of
the simplicity of the necessary calculations and clarity of results.

I. INTRODUCTION

ISPERSION relations for the widely used comb-

type slow-wave structures usually are obtained
through rather complicated computations [1], [2], [3}. In
this communication asymptotically accurate dispersion re-
lations for slow eigenwaves of a dense comb placed on the
wall of a parallel-plate waveguide are given in closed
form. The equations can be easily resolved numerically. If
the ratio of the light velocity ¢ to that of the slow wave v
is not too small (e.g., ¢/ v > 2.5), explicit formulas for the
wavelength as a function of the phase shift can be ob-
tained.

An analysis of dispersion relations for combs, based on
the above-mentioned equations, has advantages over com-
monly used methods because of the simplicity of the
necessary calculations and the clarity of results.

Manuscript received July 18, 1977; revised December 11, 1978.
The author is with the Institute of Radiophysics and FElectronics,
Academy of Sciences of the Ukranian S.S.R., Kharkov 85, US.S.R.

II. BAsIC RELATIONS

Consider a comb placed on the wall of a parallel-plate
waveguide (Fig. 1), where d is the period, /2 the groove
depth, 8 the groove width, and A the spacing between tops
of the lamellas and the upper waveguide wall. We will also
use the following notation: A for the free-space wave-
length, w the circular frequency, k=27 /A=w/c the wave-
number, k=d/A=kd/2n, 6=48/d, v=«tankh,
B the phase constant of the slow wave, a=V/f 2—k? the
transverse wavenumber of the slow wave, b=pfd/27
(where Bd is the phase shift over one period), and a=
ad /2.

For the case of 4=00, open comb, the dispersion
equation for the TM slow wave (with nonzero compo-
nents £, E,, and H,) was obtained in [4, eq. (16)] with an
assumption that terms of the order exp(—2wh/8) and «?
could be neglected (indeed, these values are generally very
small in real slow-wave structures). Through some labori-
ous and sophisticated calculations the author has
succeeded in obtaining an explicit expression for the in-
tegral [4, eq. 1(b)] from (the derivation has been omitted
here). With the aid of this formula and an additional
assumption, i.e., exp(—2xd/d)<1 (which holds in most
cases), we can now obtain a closed form of the dispersion
equation for slow waves in a comb placed in a waveguide.
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