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Propagation in Twisted Square Waveguide

LEONARD LEWIN, SENIOR MEMBER, IEEE, AND THOMAS RUEHLE STUDENT MEMBER, IEEE

Abstrszct-Tbe problem of propagation of TE modes in twisted rectms-

gular wavegsddes has been solved except for the ease where one of the

propagating modes beeomes degenerate. l%e purpose of tbfs paper is to

show how to obtain a solution for degenerate modes in a twisted reetmsgu-

Iar wavegnide, with empfsaak on the particular case of the square wave-

guide, for which the lowest order mode is degenerate. It is shown that the

propagation emsstant for the twisted square waveguide ean be expr- as

an asymptotic series the fii term beii the propagation constant for a

straight square wavegsdde and the fiit order emreetion term bekg of

order l/L where L is the dfstassee in which the guide makes one fufl

rotation. The propagation constant for a nondegenerate mode in a twisted

rectarsgsstar waveguide, on the other han4 can be expressed f. a similar

-er exeept that the fiit-order em’reetion term is of order I/Lz. Some

comments are offered on the nature of the tramdtion when the propagating

mode is afmost degenerate.

I. INTRODUCTION

T HE PROBLEM of propagation of nondegenerate

TE-modes in twisted rectangular waveguides has

been solved [1, pp. 96– 101], and shows that for a narrow

rectangular waveguide the polarization of the dominant

mode twists as the guide twists. As the guide becomes

more and more square an increased coupling to a cross-

polarized dominant mode can be seen. In the limit as the

rectangular guide becomes square, the nondegenerate

solution breaks down. The square guide is degenerate in

the respect that there is a cross-polarized dominant mode

in addition to the normally polarized dominant mode

which must be explicitly taken into consideration at the

beginning of the solution by starting with two coupled

modes similar to what has been done for the curved

circular waveguide [1, pp. 105–111 ]. When the solution is

found it is seen to have a quite different behavior from

that of the narrow rectangular waveguide.

The square waveguide represents the case where the

lowest order mode becomes degenerate. It is treated in

detail here, but it will be shown that any degenerate

propagating mode can be treated in the same way.

11. THE WAVE EQUATION

The twisted square guide is shown in Fig. 1. The wave

equation for a twisted coordinate system X, Y, Z has been

found to be [1, pp. 96–101]
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Fig. 1. Twisted square waveguide and helical coordinate system.
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where

X=x cos(pz) +y sin(pz)

Y=y cos(pz) – xsin(pz)

Z=z

k= 2v/A

p=2v/L (3)

x,y, z are the coordinates in a fixed rectangular coordinate

system and L is the distance in which the twisted guide

makes one complete rotation. For the TE modes the

electric field can be expressed as [1, pp. 96– 101]

a$

‘Y=–=

E== O.

The boundary conditions for the square guide are

a*
EX=—=O,

ay
at Y= fa/2

~ _g=o

y- ax ‘
at X=&a/2

(4)

Ez = O, on the guide surface.

This last condition is automatically satisfied by (4). (5)
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III. ZEROTH ORDER SOLUTION

We shall seek to construct a solution as was done in the

case of the rectangular guide [1, pp. 96– 101] by assuming

a solution of the wave equation for Y of the form

where

k’-&= $(l+A,p+A2p’+”” ”). (7)

Substituting (6) and (7) into the wave equation (1) and

examining the terms of the order p 0, the following equa-

tion is obtained:

a ‘V. a ‘*. n-’
—+— +— ?vO= o.
ax’ aY2 a’

(8)

Solving for VO and applying the boundary conditions of

(5) it can be seen that there are two solutions, correspond-

ing to the TEOI mode and the TEIO mode. Therefore, the

following expression can be written for ‘YO:

“’=sin(:x)+asin(:y)(9)

with a a parameter to be determined.

When we have solved for a and A, we find that there

are two distinct modes, resembling the sum and difference

of the T~l and TEIO modes in quadrature. These two

modes will propagate at different velocities and therefore,

just as is found for the curved circular waveguide [1, pp.

105– 11 1], [2, pp. 58–68], the combination of these two

modes at any cross section will involve a phase change

depending on the amount of twist in the guide. At certain

critical points the phase change can be 90°, 180°, or 360”,

causing a TEOI type mode to change into a TE 10 type

mode and back again as it propagates down the guide.

The solution no longer propagates more or less unchanged

as it does for the narrow rectangular twisted waveguide.

IV. FIRST-ORDER SOLUTION

Substituting (6) and (7) into the wave equation (1) and

retaining only the terms of order p the following is ob-

tained:

az~l a2V1 z ~’
—+—

a’ ( (~x)+asin(~y))
+~*l+— Al sin

ax’ ay’ az

-2’% y(c0s:x)+2’w:ficOs(: y)=0

(10)

with

()

A’
1/2

k’=k 1–— .
4a2

The most general solution satisfying the boundary condi-

tions is

(11)

Substituting this into (10) and applying the orthogonality

properties of the cosines we get

(m’+ n’- 1)z4.. = * J~J~2Ja’2
– a/2

“Cos[(x-mcos[(y-w
+4sin(:x)+asin(:y))
–2jk’~ Ycos(~X) +2jk’~aXcos(~ Y)) dXdY

(12)
where

<.=l

tm = 2, m>O.

It can be seen that when m=O, n= 1 or when m= 1, n=O,

the left-hand side of (12) goes to zero. When this occurs

there are only two unknowns left in (12), which can,

therefore, be solved for A, and a, and give

~=+-j (13)

Al= – 16jk’ixa2/v4= A 16k’a2/w4. (14)

To assure uniqueness we require that *1 be linearly free

of VO; *2 be linearly free of 92, and *O; etc., as was done

with the twisted rectangular waveguide [2, pp. 26–35].

Therefore, solving (12) for A~. and applying the unique-

ness considerations, we find that

(15)

where

A mn = o, m= O,n=O

az 1—cosmr
=–8jti — m= O,n>l

T4 n’(n’– 1) ‘

. ,< l—cosm~
=G8Jk ~ Y m>l, n=O

m rn2(m2— 1)

[

a2 (1 +cosm7r)(l -cosmr)
= 8jk’Y

n’(1 – m’)

_ .(l-cosm7r)(l +cosnr) 1
+J I m>l, n>l.

mz(l – nz) mz+n’—l ‘

(16)

The primes on the summations in (15) denote that the

m = 1 and n = 1 terms are omitted.

V. SECOND-ORDER SOLUTION

The second-order equation will only be solved far

enough to determine the value of A2 in (7). Substituting

(6) and (7) into the wave equation (1) and retaining the

terms of order p2, the following equation is obtained:

a 2*2 a 2*2

ax’ +
—+~*2=F(x, Y)
a Y’ a2

(17)
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where

F(X, Y)= ~(Y2–#2)sin(~X) *jj(X2– A2)sin(~ Y)

Once again, the most general solution satisfying the

boundary conditions is

~2=$o:o~mco5[(x-;)%]co5[(y-i)%l
(19)

where, on applying the orthogonality conditions, it is

found that

(W2+n’- l)l?mn = +J”’2 J“’2 F(X> Y)
– a/2 – a/2

.COS[(X-;):]COS[( Y-;);] WY.

(20)

When m= O,n = 1 or when m =1, n = O, the left-hand side

of (20) goes to zero. We can see by inspection of F(X, Y)

that there is only one unknown in it and therefore two

equations and one unknown will result when m = O,n = 1

or m = 1, n = O. Fortunately, it turns out that both equa-

tions give te same result. Solving for A2 it is found that

(21)

where

find that

/?2=k’2-+t,‘%2A2
a2

(25)

where A ~, A2, and p are given in (14), (21), and (3),

respectively. An alternative form of (25) is

11 1161

{

%-2 128—=— ~+ fi— —
A; A: ~x~–~ 2

g r’

where A= is the wavelength in twisted square guide, the

dominant wavelength in straight guide Ag is

A*=
A

(1 -A2/4a2)’~2

and

~= ~ ~(l+c0sm7)(1+2m2) tanh(fti= ).
~=z 2(m2 – 1)9/2

Numerically it is found that g= 0.063774, m= 0.20035.

L = the distance in which the guide makes one full rota-

tion.

A plot of A2~2/a2 versus a/h k given in Fig. 2.

VI. CHANGE IN CUTOFF FREQUENCY

We know that as the distance in which the guide makes

one full rotation approaches infinity, the wavelength at

the cutoff tlequency will approach 2a. Therefore, we can

assume that M = (2a – AC), where & is the wavelength at

cutoff frequency in the twisted guide, will be small. An

equation for the cutoff frequency can be written in terms

of powers of M, and when this has been done it can be

seen that M is of order 1\ L2. Therefore, retaining all

~ ~~(l+cosrn7r)(l -cosn7r)[m2(l -nz2)+n2(l+m2)]
S=–128$+64k’2$ $’ ~ (22)

~=o n=2

The doubly infinite series in (22) can be partially summed

to give

{
‘2=5 ~+ ~~ 128 ~ a2@?’r’ 4772

(2T2 + 364 1600 128.—— ——— —
3 3T2 # # g ))

(23)

where

g. g 77(1+ cosm77)(l + 27n2) tad ~ ~m-

~=z 2(m2– 1)9/2 ( 2 )<

(24)

This series is extremely rapidly convergent (-1/m7).

We can now express the propagation coefficient in the

twisted square guide to order p 2. Solving (7) for /32 we

./
n4(m2– l)3(n2+m2– 1)

terms of order 1/L2 or lower we find that the cutoff

frequency of the twisted square guide increases, ap-

proximately in the ratio of

The plus sign in (27) gives the ratio for the mode with
rotating polarization in the same direction as the guide

twist (a= +j), while the minus sign gives the ratio for the

mode with the polarization rotating in the opposite direc-

tion of the twist (a= –j).

VII. HIGHER ORDER DEGENERACIES

In Fig. 1 if we replace the waveguide dimension in the

Y direction by (2q + I)a, where q is an integer, we can
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Fig. 2. Graph of A2w2/a2 versus a/k.

solve for the propagation at a higher order degeneracy.

The boundary conditions can now be written as

(28)

Solving for a and A ~ in the same way as was done for the

square waveguide we find that, to first order in 1/L,

where

b=(2q+l)a, q=o,l,2, ”””.

(29)

It can be seen after solving for *O that there are two

distinct modes, resembling the sum and difference of the

TEIO and TEO(z~+ ~, modes in quadrature, where q is any

nonnegative integer,

*O= sin
()

(2q+ l)7rY
2X *jsin b
a ‘Sin(:x)+jsin(:y)

(30)

When q= O then a= b, and (29) reduces to (26) (to first

order). Similarly, (30) reduces to (9).

VIII. Tm ALMOST DEGENERATE GUIDE

The previously outlined method does not lend itself to

solving the problem of the almost degenerate guide. The

method for the square guide will only work exactly at a

degeneracy. The solution for the rectangular guide works

well when one dimension is quite a bit larger than, and

not an odd integer submultiple of, the other. As the guide

dimensions move closer and closer to a degeneracy the

rectangular solution requires a larger and larger L for

convergence and it blows up altogether when the guide

47

becomes degenerate. Therefore this asymptotic method

yields no useful solution for a twisted guide near (but not

exactly at) a degeneracy.

A similar type of difficulty can be seen in the problem

of a junction between straight and curved rectangular

guide [2, pp. 44-57] near the cutoff of higher order modes.

It also appears that the solution of TM modes propagat-

ing in a twisted rectangular waveguide [3] similarly fails

near a degeneracy, though exactly at a degeneracy the

method of this paper should be applicable.

We would like to have a solution which would behave

like the rectangular solution [1, pp. 96– 101] when one

dimension is quite a bit larger than, and not an odd

integer submultiple of, the other and would behave like

the leading term in the degenerate guide solution when

one dimension is an odd integer multiple of the other. A

possible form of solution can be constructed from the

knowledge of our existing results. However, this possible

solution is not unique and is shown here only to give some

idea as to what form the solution might take in the case of

the almost degenerate guide.

The speculated structure for the solution, which joins

the rectangular and square formulas through a smooth

transition is

1

q

‘i-:[f++[(%r+%+%)]-1}

(31)

where

Ag=
A

(1 -A2/4a2)1’2

~_ b2~2

[

~2b2 2ag(@)

8
6+ Ir2—– ———————

3a2 ~3b 1

g(+)= 16.902+ 128 tan+

co m3-(rn2+ l/8)(rn2- l/4) ’12tanh[2@(rn2- 1/2)1/2]
–4X

1 (m’- 1/4)5

and

~=g.

So long as b#(2q + l)a, so that ~#(2q+ l)7r/2, where q

is a nonnegative integer, the square root in (31) can be

expanded in powers of 1/L2, to give the known form for

?iP But as b-+(2q + l)a, ltan+l~ca and ICI becomes large,

so that the expansion becomes unavailable. Exactly at

b= (2q + l)a, IC l~cc and the square root reduces to
~ aC/ bL& giving the first correction term in 1/L in

(29). It is clear, therefore, how some such structureas(31)

can bridge the two forms, but it is much more difficult to

see how to develop a suitable expansion parameter there-
from. It should be stressed that no particular credence can
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be claimed for the form in (31), and that the purpose of

this section is to indicate the special nature of the difficul-

ties associated with the near-degenerate cases, and why

the attempted expansion runs into trouble.

X. CONCLUSIONS

With the publication of this paper (and also a forthcom-

ing paper dealing with propagation of the TM modes [3])

we can say that the problem of propagation in a twisted

rectangular guide is complete and well understood with

the exception that there is still work that needs to be done

to obtain a valid and useful expansion in the neighbor-

hood of, but not exactly at, a degeneracy.
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Dispersion Relations for Comb-Type
Slow-Wave Structures

I. L. VERBITSKII

Abstract-Aaymptoticalfy accurate dispersion relations for slow eigen-

waves of a dense comb placed on the wall of a parallel-plate waveguide are

given in eked form, The equations eao be easify resolved mssnerically.

ASSanefysis of dispersion refmtions for combs, baaed on tbe abovemen-

tioned eqoatio~ baa advantages over comsnonfy used methods beeauae of

the simpfieity of tie naeeaary calculations and clarity of resutts.

I. INTRODUCTION

D ISPERSION relations for the widely used comb-

type slow-wave structures usually are obtained

through rather complicated computations [1], [2], [3]. In

this communication asymptotically accurate dispersion re-

lations for slow eigenwaves of a dense comb placed on the

wall of a parallel-plate waveguide are given in closed

form. The equations can be easily resolved numerically. If

the ratio of the light velocity c to that of the slow wave v

is not too small (e.g., c/u > 2.5), explicit formulas for the

wavelength as a function of the phase shift can be ob-

tained.

An analysis of dispersion relations for combs, based on

the above-mentioned equations, has advantages over com-

monly used methods because of the simplicity of the
necessary calculations and the clarity of results.
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II. BASIC RELATIONS

Consider a comb placed on the wall of a parallel-plate

waveguide (Fig. 1), where d is the period, h the groove

depth, cl the groove width, and A the spacing between tops

of the lamellas and the upper waveguide wall. We will also

use the following notation: A for the free-space wave-

length, u the circular frequency, k= 27r/A = u/c the wave-

number, ~ = d/A = kd/2~, 9 = d~d, v = KO tan kh,

-r theB the phase constant of the slow wave, a – /3 – k

transverse wavenumber of the slow wave, b= 8d/2n

(where /3d is the phase shift over one period), and a=

ad/2~.

For the case of A = co, open comb, the dispersion

equation for the TM slow wave (with nonzero compo-

nents EX, EY, and Hz) was obtained in [4, eq. (16)] with an

assumption that terms of the order exp( – 2~h/ 8 ) and K2

could be neglected (indeed, these values are generally very

small in real slow-wave structures). Through some labori-

ous and sophisticated calculations the author has

succeeded in obtaining an explicit expression for the in-
tegral [4, eq. l(b)] from (the derivation has been omitted

here). With the aid of this formula and an additional

assumption, i.e., exp( – 2TA / d)<< 1 (which holds in most

cases), we can now obtain a closed form of the dispersion

equation for slow waves in a comb placed in a waveguide.
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